A Fast Multiscale Clustering Approach Based on DBSCAN

Autor: Runzi Chen, Shuliang Zhao, Meishe Liang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Wireless Communications and Mobile Computing, Vol 2021 (2021)
ISSN: 1530-8677
1530-8669
Popis: Multiscale brings great benefits for people to observe objects or problems from different perspectives. It has practical significance for clustering on multiscale data. At present, there is a lack of research on the clustering of large-scale data under the premise that clustering results of small-scale datasets have been obtained. If one does cluster on large-scale datasets by using traditional methods, two disadvantages are as follows: (1) Clustering results of small-scale datasets are not utilized. (2) Traditional method will cause more running overhead. Aims at these shortcomings, this paper proposes a multiscale clustering framework based on DBSCAN. This framework uses DBSCAN for clustering small-scale datasets, then introduces algorithm Scaling-Up Cluster Centers (SUCC) generating cluster centers of large-scale datasets by merging clustering results of small-scale datasets, not mining raw large-scale datasets. We show experimentally that, compared to traditional algorithm DBACAN and leading algorithms DBSCAN++ and HDBSCAN, SUCC can provide not only competitive performance but reduce computational cost. In addition, under the guidance of experts, the performance of SUCC is more competitive in accuracy.
Databáze: OpenAIRE