EIGENVALUES OF THE FINSLER p ‐LAPLACIAN ON VARYING DOMAINS

Autor: Giuseppina di Blasio, Pier Domenico Lamberti
Přispěvatelé: DI BLASIO, Giuseppina, Domenico Lamberti, Pier
Rok vydání: 2020
Předmět:
Zdroj: Mathematika. 66:765-776
ISSN: 2041-7942
0025-5793
DOI: 10.1112/mtk.12042
Popis: We study the dependence of the first eigenvalue of the Finsler $p$-Laplacian and the corresponding eigenfunctions upon perturbation of the domain and we generalize a few results known for the standard $p$-Laplacian. In particular, we prove a Frech\'{e}t differentiability result for the eigenvalues, we compute the corresponding Hadamard formulas and we prove a continuity result for the eigenfunctions. Finally, we briefly discuss a well-known overdetermined problem and we show how to deduce the Rellich-Pohozaev identity for the Finsler $p$-Laplacian from the Hadamard formula.
Databáze: OpenAIRE