Analysis of columnar-to-equiaxed transition experiment in lab scale steel casting by a multiphase model
Autor: | Ch.-A. Gandin, Isabelle Poitrault, S. Sachi, Marvin Gennesson, Miha Založnik, Hervé Combeau, Joëlle Demurger, M. Stoltz |
---|---|
Přispěvatelé: | Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre de REcherche AScometal (CREAS), Ascométal, ArcelorMittal Industeel |
Rok vydání: | 2019 |
Předmět: |
Equiaxed crystals
Number density Materials science Metallurgy Alloy steel Nucleation [CHIM.MATE]Chemical Sciences/Material chemistry 02 engineering and technology engineering.material 021001 nanoscience & nanotechnology Microstructure 01 natural sciences 010305 fluids & plasmas 0103 physical sciences engineering Ingot 0210 nano-technology Supercooling ComputingMilieux_MISCELLANEOUS Steel casting |
Zdroj: | IOP Conference Series: Materials Science and Engineering IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, 529, pp.012039. ⟨10.1088/1757-899X/529/1/012039⟩ |
ISSN: | 1757-899X 1757-8981 |
DOI: | 10.1088/1757-899x/529/1/012039 |
Popis: | Correct prediction of composition heterogeneities and grain structure across a steel ingot is critical in optimizing the industrial processing parameters for enhanced performance. The columnar to equiaxed transtion (CET) is a microstructural transition which is strictly controlled as it affects the mechanical properties of the final product along with the macrosegregation patterns. Larger equiaxed regions are preferred for most industrial applications. CET is significantly affected by the number density of equiaxed grains and by the nucleation undercooling. 8 kg 42CrMo4 alloy steel ingots (240 mm x 60 mm x 60 mm) were cast. The cast structure was characterized by ASCOMETAL. The experiments were simulated with a process-scale model of solidification that incorporates a multiscale description of the microstructure formation. The goal of the present study is to show the capabilities of such a process-scale solidification model to explain the observed structure distributions (extent of the columnar and equiaxed zones, equiaxed-to-columnar transition). |
Databáze: | OpenAIRE |
Externí odkaz: |