Neural Knowledge Base Repairs

Autor: Fabian M. Suchanek, Thomas Pellissier Tanon
Přispěvatelé: Data, Intelligence and Graphs (DIG), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Informatique et Réseaux (INFRES), Télécom ParisTech, Institut Polytechnique de Paris (IP Paris)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: The Semantic Web 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings
European Semantic Web Conference
European Semantic Web Conference, Jun 2021, Hersonissos (virtual), Greece. pp.287-303, ⟨10.1007/978-3-030-77385-4_17⟩
The Semantic Web ISBN: 9783030773847
ESWC
Popis: International audience; The curation of a knowledge base is a crucial but costly task. In this work, we suggest to make use of the advances in neural network research to improve the automated correction of constraint violations. Our method is a deep learning refinement of "Learning how to correct a knowledge base from the edit history", and similarly uses the edits that solved some violations in the past to infer how to solve similar violations in the present. Our system makes use of the graph content, literal embeddings, and features extracted from Web pages to improve its performance. The experimental evaluation on Wikidata shows significant improvements over baselines.
Databáze: OpenAIRE