Stretchable, Bifacial Si-Organic Hybrid Solar Cells by Vertical Array of Si Micropillars Embedded into Elastomeric Substrates
Autor: | Sungsoo Yoon, Dahl Young Khang |
---|---|
Rok vydání: | 2018 |
Předmět: |
Materials science
business.industry Stretchable electronics Composite number 02 engineering and technology Hybrid solar cell 010402 general chemistry 021001 nanoscience & nanotechnology Elastomer 01 natural sciences 0104 chemical sciences Planar Buckling Optoelectronics General Materials Science Electronics 0210 nano-technology business Vertical array |
Zdroj: | ACS Applied Materials & Interfaces. 11:3290-3298 |
ISSN: | 1944-8252 1944-8244 |
Popis: | Stretchable electronics has enabled many unforeseen applications in a variety of fields. Mechanical design concepts to achieve the stretchability without affecting the device functionality, however, are limited to few known practices, such as mechanical buckling, serpentine shape, or simple elastomeric composites. In this paper, we propose another mechanics design principle for high stretchability (100%) based on the composite of vertical array of Si micropillars embedded into elastomer poly(dimethylsiloxane). The orthogonalization of active functional elements to applied strain direction enables highly stretchable electronic devices, where the applied strain is mostly absorbed into elastomer on interpillar space. On the other hand, the vertical pillars do not experience any noticeable strain at all. As a proof-of-concept demonstration, we fabricate stretchable Si-organic hybrid solar cells using such a design and the cell shows reasonable level of cell efficiency compared with planar counterparts. The cell can be stretched reversibly without any noticeable performance degradation. Furthermore, the cell can be operated in a bifacial mode by employing stretchable, transparent Ag nanowire-based electrodes. The mechanical design for stretchability demonstrated here would provide new opportunities for stretchable electronics. |
Databáze: | OpenAIRE |
Externí odkaz: |