Shape Optimization of a Coupled Thermal Fluid-Structure Problem in a Level Set Mesh Evolution Framework

Autor: Felipe Bordeu, Florian Feppon, Grégoire Allaire, Charles Dapogny, Julien Cortial
Přispěvatelé: Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Safran Tech, Calcul des Variations, Géométrie, Image (CVGI ), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: SeMA Journal: Boletin de la Sociedad Española de Matemática Aplicada
SeMA Journal: Boletin de la Sociedad Española de Matemática Aplicada, Springer, 2019, 76 (3), pp.413-458. ⟨10.1007/s40324-018-00185-4⟩
SeMA Journal: Boletin de la Sociedad Española de Matemática Aplicada, 2019, 76 (3), pp.413-458. ⟨10.1007/s40324-018-00185-4⟩
ISSN: 2254-3902
2281-7875
DOI: 10.1007/s40324-018-00185-4⟩
Popis: International audience; Hadamard's method of shape differentiation is applied to topology optimization of a weakly coupled three physics problem. The coupling is weak because the equations involved are solved consecutively, namely the steady state Navier-Stokes equations for the fluid domain, first, the convection diffusion equation for the whole domain, second, and the linear thermo-elasticity system in the solid domain, third. Shape sensitivities are derived in a fully Lagrangian setting which allows us to obtain shape derivatives of general objective functions. An emphasis is given on the derivation of the adjoint interface condition dual to the one of equality of the normal stresses at the fluid solid interface. The arguments allowing to obtain this surprising condition are specifically detailed on a simplified scalar problem. Numerical test cases are presented using the level set mesh evolution framework of [4]. It is demonstrated how the implementation enables to treat a variety of shape optimization problems. keywords. Topology and shape optimization, adjoint methods, fluid structure interaction, convective heat transfer, adaptive remeshing.
Databáze: OpenAIRE