Accurate Complex Multiplication in Floating-Point Arithmetic

Autor: Vincent Lefèvre, Jean-Michel Muller
Přispěvatelé: Arithmetic and Computing (ARIC), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE25-0018,Fast Relax,Approximation rapide et fiable(2014), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: ARITH 2019-26th IEEE Symposium on Computer Arithmetic
ARITH 2019-26th IEEE Symposium on Computer Arithmetic, Jun 2019, Kyoto, Japan. pp.1-7
ARITH
Popis: International audience; We deal with accurate complex multiplication in binary floating-point arithmetic, with an emphasis on the case where one of the operands in a "double-word" number. We provide an algorithm that returns a complex product with normwise relative error bound close to the best possible one, i.e., the rounding unit u.
Databáze: OpenAIRE