Advances in Nb3Sn superconducting radiofrequency cavities towards first practical accelerator applications
Autor: | Dmitri Sergatskov, Brad Tennis, Sam Posen, David N. Seidman, Jaeyel Lee, Alexander Romanenko, Oleksandr Melnychuk |
---|---|
Rok vydání: | 2021 |
Předmět: |
Accelerator Physics (physics.acc-ph)
010302 applied physics Superconductivity Materials science Field (physics) business.industry Metals and Alloys FOS: Physical sciences Particle accelerator Thermal management of electronic devices and systems Cryocooler Condensed Matter Physics 01 natural sciences law.invention Coherence length law 0103 physical sciences Materials Chemistry Ceramics and Composites Surface roughness Optoelectronics Physics - Accelerator Physics Electrical and Electronic Engineering 010306 general physics business |
Zdroj: | Superconductor Science and Technology. 34:025007 |
ISSN: | 1361-6668 0953-2048 |
Popis: | Nb3Sn is a promising next-generation material for superconducting radiofrequency cavities, with significant potential for both large scale and compact accelerator applications. However, so far, Nb3Sn cavities have been limited to continuous wave accelerating fields −1. In this paper, new results are presented with significantly higher fields, as high as 24 MV m−1 in single cell cavities. Results are also presented from the first ever Nb3Sn-coated 1.3 GHz 9-cell cavity, a full-scale demonstration on the cavity type used in production for the European XFEL and LCLS-II. Results are presented together with heat dissipation curves to emphasize the potential for industrial accelerator applications using cryocooler-based cooling systems. The cavities studied have an atypical shiny visual appearance, and microscopy studies of witness samples reveal significantly reduced surface roughness and smaller film thickness compared to typical Nb3Sn films for superconducting cavities. Possible mechanisms for increased maximum field are discussed as well as implications for physics of RF superconductivity in the low coherence length regime. Outlook for continued development is presented. |
Databáze: | OpenAIRE |
Externí odkaz: |