Quantum Dissipative Dynamics (QDD): A real-time real-space approach to far-off-equilibrium dynamics in finite electron systems

Autor: Eric Suraud, Phuong Mai Dinh, Marc Vincendon, Paul-Gerhard Reinhard, François Coppens
Přispěvatelé: Systèmes de Fermions Finis - Agrégats (LPT), Laboratoire de Physique Théorique (LPT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut für Theoretische Physik III = Institut für Quantengravitation [Erlangen], Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)-Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), ANR-16-CE30-0012,CIRCE,Dynamique de relaxation induite par la correlation dans les molecules complexes excitées par UVX(2016), ANR-18-CE30-0009,BAMBI,Attachement de particules beta sur des molécules d'intérêt biologiques(2018), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
Rok vydání: 2022
Předmět:
Zdroj: Computer Physics Communications
Computer Physics Communications, 2022, 270, pp.108155. ⟨10.1016/j.cpc.2021.108155⟩
Computer Physics Communications, Elsevier, 2022, 270, pp.108155. ⟨10.1016/j.cpc.2021.108155⟩
ISSN: 0010-4655
Popis: In this paper, we present “QDD” (Quantum Dissipative Dynamics), a code package for simulating the dynamics of electrons and ions in finite electron systems (atoms, molecules, clusters) under the influence of external electromagnetic fields . Electron emission is properly accounted for. The novel feature of the present code is that it also covers the description of dissipative dynamics induced by dynamical correlations generated by electron-electron collisions. The paper reviews the underlying theoretical as well as numerical methods and demonstrates the code's capabilities on a selection of typical examples. Program summary Program Title: QDD CPC Library link to program files: https://doi.org/10.17632/jpwzm9knmb.1 Licensing provisions: GPLv3 Programming language: Fortran 90 (with Fortran 2008 standard) Supplementary material: User Manual, input and output files Nature of problem: The QDD code serves to simulate the dynamics of finite electron systems (atoms, molecules, clusters) excited by strong electromagnetic fields as delivered by lasers or highly charged ions. Basis of the description is Time-Dependent Density Functional Theory (TDDFT) at the level of the Time-Dependent Local-Density Approximation (TDLDA) augmented by an approximate Self-Interaction Correction (SIC), the latter being crucial for proper description of electron emission. The novel feature of the present code is that it allows one to track the dissipative dynamics induced by dynamical correlations from the earliest times of excitation on. This is done here at a fully quantum mechanical level within the Relaxation-Time Approximation (RTA). Electron dynamics is also coupled to ionic motion treated by classical molecular dynamics. Solution method: The numerical representation uses a 3D coordinate-space grid for electronic wave functions and fields. The kinetic energy operator is evaluated in momentum space connected by a Fast Fourier Transform (FFT). Standard schemes for electronic ground state, ionic ground state, and propagation of TDLDA in real time as well as ionic dynamics are used. Electron emission is enabled by absorbing boundary conditions using a mask function near the boundaries. The time evolution of dissipation (by RTA) is evaluated in a large space of occupied and unoccupied single-electron states. Additional comments including restrictions and unusual features: Only the actual computing hardware (RAM, number of nodes on board) limits the system size which can be treated. The code package allows sequential and parallel (OpenMP) computation. The simulation can be continued from a previously saved dynamical configuration.
Databáze: OpenAIRE