A Notion of Convergence in Fuzzy Partially Ordered Sets
Autor: | Dimitrios N. Georgiou, Athanasios C. Megaritis, G.A. Prinos |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Relation (database)
General Mathematics lcsh:Mathematics 010102 general mathematics Order (ring theory) oF-convergence fuzzy order relation Net (mathematics) lcsh:QA1-939 01 natural sciences Fuzzy logic 010101 applied mathematics Algebra o-convergence Convergence (routing) Computer Science (miscellaneous) Computer Science::Programming Languages 0101 mathematics Partially ordered set Engineering (miscellaneous) Mathematics |
Zdroj: | Mathematics Volume 8 Issue 11 Pages: 1958 Mathematics, Vol 8, Iss 1958, p 1958 (2020) |
ISSN: | 2227-7390 |
DOI: | 10.3390/math8111958 |
Popis: | The notion of sequential convergence in fuzzy partially ordered sets, under the name oF-convergence, is well known. Our aim in this paper is to introduce and study a notion of net convergence, with respect to the fuzzy order relation, named o-convergence, which generalizes the former notion and is also closer to our sense of the classic concept of "convergence". The main result of this article is that the two notions of convergence are identical in the area of complete F-lattices. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |