Are the better cooperators dormant or quiescent?

Autor: Volker Hösel, Aurélien Tellier, Johannes Müller, Thibaut Paul Patrick Sellinger
Rok vydání: 2019
Předmět:
0106 biological sciences
0301 basic medicine
Statistics and Probability
Population
Context (language use)
Biology
010603 evolutionary biology
01 natural sciences
Models
Biological

General Biochemistry
Genetics and Molecular Biology

03 medical and health sciences
Replicator equation
Animals
Cooperative Behavior
Quantitative Biology - Populations and Evolution
education
Selection (genetic algorithm)
Ecosystem
education.field_of_study
General Immunology and Microbiology
Bacteria
Applied Mathematics
Normal-form game
Populations and Evolution (q-bio.PE)
Fungi
General Medicine
Prisoner's dilemma
Plants
Biological Evolution
030104 developmental biology
92D10
92D25
34E20

Homogeneous
Evolutionary biology
FOS: Biological sciences
Modeling and Simulation
Dormancy
General Agricultural and Biological Sciences
Zdroj: Mathematical biosciences. 318
ISSN: 1879-3134
Popis: Despite the wealth of empirical and theoretical studies, the origin and maintenance of cooperation is still an evolutionary riddle. In this context, ecological life-history traits which affect the efficiency of selection may play a role despite being often ignored. We consider here species such as bacteria, fungi, invertebrates and plants which exhibit resting stages in the form of a quiescent state or a seed bank. When quiescent, individuals are inactive and reproduce upon activation, while under seed bank parents produce offspring remaining dormant for different amount of time. We assume weak frequency-dependent selection modeled using game-theory and the prisoner's dilemma (cooperation/defect) as payoff matrix. The cooperators and defectors are allowed to evolve different quiescence or dormancy times. By means of singular perturbation theory we reduce the model to a one-dimensional equation resembling the well known replicator equation, in which the gain functions are scaled with lumped parameters reflecting the time scale of the resting state of the cooperators and defectors. If both time scales are identical cooperation cannot persist in a homogeneous population. If, however, the time scale of the cooperator is distinctively different from that of the defector, cooperation may become a locally asymptotically stable strategy. Interestingly enough, in the seed bank case the cooperator needs to become active faster than the defector, while in the quiescent case the cooperator has to be slower. We use adaptive dynamics to identify situations where cooperation may evolve and form a convergent stable ESS. We conclude by highlighting the relevance of these results for many non-model species and the maintenance of cooperation in microbial, invertebrate or plant populations.
Databáze: OpenAIRE