Network Reconstruction From Time-Course Perturbation Data Using Multivariate Gaussian Processes

Autor: Heinz Koeppl, Sara Al-Sayed
Rok vydání: 2018
Předmět:
Zdroj: IEEE MLSP 2018
(MLSP 2018) 2018 IEEE International Workshop on Machine Learning for Signal Processing
MLSP
DOI: 10.5281/zenodo.1488636
Popis: In this work, we appropriate the popular tool of Gaussian processes to solve the problem of reconstructing networks from time-series perturbation data. To this end, we propose a construction for multivariateGaussian processes to describe the continuous-time trajectories of the states of the network entities. We then show that this construction admits a state-space representation for the network dynamics.By exploiting Kalman filtering techniques, we are able to infer the underlying network in a computationally efficient manner.
Databáze: OpenAIRE