Pattern form and homoclinic structure in Zakharov equations
Autor: | Yang Yang, Tan Y, Chen Sg, Xian-Tu He |
---|---|
Rok vydání: | 1992 |
Předmět: |
Physics
Mathematics::Dynamical Systems Plasma turbulence Fixed-point theorem Fluid mechanics Atomic and Molecular Physics and Optics Hamiltonian system Nonlinear Sciences::Chaotic Dynamics symbols.namesake Nonlinear Sciences::Exactly Solvable and Integrable Systems symbols Homoclinic orbit Hamiltonian (quantum mechanics) Mathematics::Symplectic Geometry Mathematical physics |
Zdroj: | Physical Review A. 45:6109-6112 |
ISSN: | 1094-1622 1050-2947 |
DOI: | 10.1103/physreva.45.6109 |
Popis: | The relations between the homoclinic structure and spatial coherent pattern in Zakharov equations (ZE's) are discussed. Our results present Kolmogorov-Arnold-Moser curves and homoclinic crossing for ZE's, which exhibit the property of a near-integrable system, and Hamiltonian chaos in the ZE's is revealed |
Databáze: | OpenAIRE |
Externí odkaz: |