Pattern form and homoclinic structure in Zakharov equations

Autor: Yang Yang, Tan Y, Chen Sg, Xian-Tu He
Rok vydání: 1992
Předmět:
Zdroj: Physical Review A. 45:6109-6112
ISSN: 1094-1622
1050-2947
DOI: 10.1103/physreva.45.6109
Popis: The relations between the homoclinic structure and spatial coherent pattern in Zakharov equations (ZE's) are discussed. Our results present Kolmogorov-Arnold-Moser curves and homoclinic crossing for ZE's, which exhibit the property of a near-integrable system, and Hamiltonian chaos in the ZE's is revealed
Databáze: OpenAIRE