Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells

Autor: Sylvie Coscoy, François Amblard, A. Buguin, Myriam Reffay, Benoit Ladoux, Jacques Camonis, Pascal Silberzan, Olivier Cochet-Escartin, Maria Carla Parrini
Přispěvatelé: Physico-Chimie-Curie (PCC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie-Université Pierre et Marie Curie - Paris 6 (UPMC), CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) (MSC), Centre National de la Recherche Scientifique (CNRS), Unité de génétique et biologie des cancers (U830), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie-Institut National de la Santé et de la Recherche Médicale (INSERM), Matière et Systèmes Complexes (MSC (UMR_7057)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Mechanobiology Institute [Singapore] (MBI), National University of Singapore (NUS), C'nano Ile de France, Association Christelle Bouillot, Association pour la Recherche sur le Cancer, Labex CelTisPhyBio, Institut Curie Programme Incitatif et Coopératif 'Physique de la Cellule', Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes (MSC), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Physico-Chimie-Curie ( PCC ), Centre National de la Recherche Scientifique ( CNRS ) -INSTITUT CURIE-Université Pierre et Marie Curie - Paris 6 ( UPMC ), CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) ( MSC ), Centre National de la Recherche Scientifique ( CNRS ), Unité de génétique et biologie des cancers ( U830 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut Curie-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Matière et Systèmes Complexes ( MSC ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Jacques Monod ( IJM ), Mechanobiology Institute [Singapore] ( MBI ), National University of Singapore ( NUS )
Rok vydání: 2014
Předmět:
rac1 GTP-Binding Protein
RHOA
MESH: Fluorescence Resonance Energy Transfer
GTPase
Madin Darby Canine Kidney Cells
MESH: Dogs
0302 clinical medicine
MESH : Dogs
MESH : Protein Transport
Cell Movement
Fluorescence Resonance Energy Transfer
MESH : Cell Movement
MESH: Animals
Pseudopodia
MESH: Cell Movement
Physics
0303 health sciences
Tractive force
biology
Biomechanical Phenomena
Cell biology
Actin Cytoskeleton
Protein Transport
MESH: rhoA GTP-Binding Protein
MESH: Protein Transport
MESH: Biomechanical Phenomena
[SDV.BC]Life Sciences [q-bio]/Cellular Biology
MESH: Cell Adhesion
Mechanical traction
MESH : rac1 GTP-Binding Protein
03 medical and health sciences
Dogs
Cell Adhesion
Animals
Cell adhesion
MESH : Biomechanical Phenomena
MESH : rhoA GTP-Binding Protein
030304 developmental biology
MESH : Madin Darby Canine Kidney Cells
[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology
MESH: rac1 GTP-Binding Protein
Collective cell migration
MESH: Madin Darby Canine Kidney Cells
Cell Biology
MESH : Cell Adhesion
Multicellular organism
MESH : Fluorescence Resonance Energy Transfer
MESH : Actin Cytoskeleton
MESH: Pseudopodia
MESH : Pseudopodia
biology.protein
MESH : Animals
MESH: Actin Cytoskeleton
rhoA GTP-Binding Protein
030217 neurology & neurosurgery
Zdroj: Nature Cell Biology
Nature Cell Biology, Nature Publishing Group, 2014, 16 (3), pp.217-23. ⟨10.1038/ncb2917⟩
Nature Cell Biology, 2014, 16 (3), pp.217-23. ⟨10.1038/ncb2917⟩
Nature Cell Biology, Nature Publishing Group, 2014, 16 (3), pp.217-23. 〈10.1038/ncb2917〉
ISSN: 1476-4679
1465-7392
DOI: 10.1038/ncb2917
Popis: International audience; The leading front of a collectively migrating epithelium often destabilizes into multicellular migration fingers where a cell initially similar to the others becomes a leader cell while its neighbours do not alter. The determinants of these leader cells include mechanical and biochemical cues, often under the control of small GTPases. However, an accurate dynamic cartography of both mechanical and biochemical activities remains to be established. Here, by mapping the mechanical traction forces exerted on the surface by MDCK migration fingers, we show that these structures are mechanical global entities with the leader cells exerting a large traction force. Moreover, the spatial distribution of RhoA differential activity at the basal plane strikingly mirrors this force cartography. We propose that RhoA controls the development of these fingers through mechanical cues: the leader cell drags the structure and the peripheral pluricellular acto-myosin cable prevents the initiation of new leader cells.
Databáze: OpenAIRE