Buffering Capacity Explains Signal Variation in Symbiotic Calcium Oscillations
Autor: | Myriam Charpentier, Jongho Sun, Emma Granqvist, Saul Hazledine, J. Allan Downie, Wojciech Kozlowski, Derin Wysham, Pauline Haleux, Krasimira Tsaneva-Atanasova, Giles E. D. Oldroyd, Richard J. Morris, Teresa Vaz Martins |
---|---|
Rok vydání: | 2012 |
Předmět: |
0106 biological sciences
Physiology ATPase chemistry.chemical_element Plant Science Buffers Calcium Models Biological 01 natural sciences 03 medical and health sciences Medicago truncatula Botany Genetics medicine Computer Simulation Calcium Signaling Symbiosis Ion channel 030304 developmental biology 0303 health sciences Nucleoplasm biology Endoplasmic reticulum Reproducibility of Results Hyperpolarization (biology) Potassium channel Systems Biology Molecular Biology and Gene Regulation Kinetics medicine.anatomical_structure chemistry biology.protein Biophysics Nucleus 010606 plant biology & botany |
Zdroj: | Plant Physiology. 160:2300-2310 |
ISSN: | 1532-2548 |
DOI: | 10.1104/pp.112.205682 |
Popis: | Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca2+) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca2+ oscillations. Among these an ion channel, Doesn't Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca2+ ATPase is localized on both the inner and outer nuclear envelopes. Doesn't Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca2+ into the nucleus. Ca2+ channels and Ca2+ pumps are needed for the release and reuptake of Ca2+ from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca2+ remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca2+ oscillations. This model can recapitulate Ca2+ oscillations, and with the inclusion of Ca2+-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal. |
Databáze: | OpenAIRE |
Externí odkaz: |