A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization
Autor: | Jerome Helie, Gonzalo Sáez-Mischlich, Filippo Giussani, Federico Piscaglia |
---|---|
Přispěvatelé: | Politecnico di Milano [Milan] (POLIMI), Département Aérodynamique Energétique et Propulsion (DAEP), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Continental Automotive France [Toulouse], Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Continental Automotive France SAS (FRANCE), Politecnico di Milano (ITALY), Département Aérodynamique Energétique et Propulsion - DAEP (Toulouse, France) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Primary atomization
[SPI.OTHER]Engineering Sciences [physics]/Other Injection Materials science Physics and Astronomy (miscellaneous) Bubble Nozzle 010103 numerical & computational mathematics Internal nozzle flows System of linear equations 01 natural sciences Physics::Fluid Dynamics Autre Volume of fluid method OpenFOAM 0101 mathematics Numerical Analysis Cavitation Three-phase LES-VOF Applied Mathematics Mechanics Solver Computer Science Applications 010101 applied mathematics Computational Mathematics Three-phase Modeling and Simulation Volume fraction |
Zdroj: | Journal of Computational Physics Journal of Computational Physics, Elsevier, 2020, 406, pp.109068-109106. ⟨10.1016/j.jcp.2019.109068⟩ |
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2019.109068⟩ |
Popis: | International audience; The development of a single-fluid solver supporting phase-change and able to capture the evolution of three fluids, two of which are miscible, into the sharp interface capturing Volume of Fluid (VOF) approximation, is presented. The transport of each phase-fraction is solved independently by a flux-corrected transport method to ensure the boundedness of the void fraction over the domain. The closure of the system of equations is achieved by a cavitation model, that handles the phase change between the liquid and the fuel vapor and it also accounts for the interaction with the non-condensable gases. Boundedness and conservativeness of the solver in the transport of the volume fraction are verified on two numerical benchmarks: a two-dimensional bubble rising in a liquid column and a cavitating/condensing liquid column. Finally, numerical predictions from large-eddy simulations are compared against experimental results available from literature; in particular, validation against high-speed camera visualizations and Laser Doppler Velocimetry (LDV) measurements of cavitating microscopic in-nozzle flows in a fuel injector is reported. |
Databáze: | OpenAIRE |
Externí odkaz: |