Differences in the hydrological cycle and sensitivity between multiscale modeling frameworks with and without a higher‐order turbulence closure
Autor: | Zhujun Li, Anning Cheng, Cristiana Stan, Kuan-Man Xu, Peter N. Blossey |
---|---|
Rok vydání: | 2017 |
Předmět: |
Global and Planetary Change
010504 meteorology & atmospheric sciences Radiative cooling Turbulence Sensible heat 010502 geochemistry & geophysics Atmospheric sciences 01 natural sciences Article Troposphere General Earth and Planetary Sciences Environmental Chemistry Environmental science Sensitivity (control systems) Precipitation Water cycle Bowen ratio 0105 earth and related environmental sciences |
Zdroj: | J Adv Model Earth Syst |
ISSN: | 1942-2466 |
DOI: | 10.1002/2017ms000970 |
Popis: | Current conventional global climate models (GCMs) produce a weak increase in global mean precipitation with anthropogenic warming in comparison with the lower-tropospheric moisture increases. The motive of this study is to understand the differences in the hydrological sensitivity between two multiscale modeling frameworks (MMFs) that arise from the different treatments of turbulence and low clouds in order to aid to the understanding of the model spread among conventional GCMs. We compare the hydrological sensitivity and its energetic constraint from MMFs with (SPCAM-IPHOC) or without (SPCAM) an advanced higher-order turbulence closure. SPCAM-IPHOC simulates higher global hydrological sensitivity for the slow response but lower sensitivity for the fast response than SPCAM. Their differences are comparable to the spreads of conventional GCMs. The higher sensitivity in SPCAM-IPHOC is associated with the higher ratio of the changes in latent heating to those in net atmospheric radiative cooling, which is further related to a stronger decrease in the Bowen ratio with warming than in SPCAM. The higher sensitivity of cloud radiative cooling resulting from the lack of low clouds in SPCAM is another major factor in contributing to the lower precipitation sensitivity. The two MMFs differ greatly in the hydrological sensitivity over the tropical lands, where the simulated sensitivity of surface sensible heat fluxes to surface warming and CO(2) increase in SPCAM-IPHOC is weaker than in SPCAM. The difference in divergences of dry static energy flux simulated by the two MMFs also contributes to the difference in land precipitation sensitivity between the two models. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |