BURST: Benchmarking Uniform Random Sampling Techniques

Autor: Mathieu Acher, Gilles Perrouin, Maxime Cordy
Přispěvatelé: Diversity-centric Software Engineering (DiverSe), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LANGAGE ET GÉNIE LOGICIEL (IRISA-D4), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Namur [Namur] (UNamur), Security, Reliability and Trust Interdisciplibary Research Centre (S'nT), Université du Luxembourg (Uni.lu)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Science of Computer Programming
Science of Computer Programming, 2023, pp.1-10
ISSN: 0167-6423
Popis: International audience; BURST is a benchmarking platform for uniform random sampling (URS) techniques. Given: i) the description of a sampling space provided as a Boolean formula (DIMACS), and ii) a sampling budget (time and strength of uniformity), BURST evaluates ten samplers for scalability and uniformity. BURST measures scalability based on the time required to produce a sample, and uniformity based on the state-of-the-art and proven statistical test Barbarik. BURST is easily extendable to new samplers and offers: i) 128 feature models (for highly-configurable systems), ii) many other models mined from the artificial intelligence/satisfiability solving benchmarks. BURST envisions supporting URS assessment and design across multiple research communities.
Databáze: OpenAIRE