Potential feedback mediated by soil microbiome response to warming in a glacier forefield
Autor: | Anzhou Ma, Yu-Wan Wang, Jing Wei, Hanchang Zhou, Guohua Liu, Guoqiang Zhuang, Ma Jianpeng, Kristian K. Brandt |
---|---|
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
010504 meteorology & atmospheric sciences Atmospheric sciences Global Warming 010603 evolutionary biology 01 natural sciences Methane Greenhouse Gases Soil chemistry.chemical_compound Deglaciation Environmental Chemistry Ice Cover Glacial period 0105 earth and related environmental sciences General Environmental Science Global and Planetary Change geography geography.geographical_feature_category Ecology Microbiota Global warming Glacier Microbial population biology chemistry Greenhouse gas Carbon dioxide Environmental science |
Zdroj: | Global Change Biology. 26:697-708 |
ISSN: | 1365-2486 1354-1013 |
DOI: | 10.1111/gcb.14936 |
Popis: | Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2 ) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2 -C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2 -C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2 -C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming. |
Databáze: | OpenAIRE |
Externí odkaz: |