Numerical and experimental approaches to characterize the mass transfer process in wood elements
Autor: | Frédéric Dubois, Tuan Anh Nguyen, Nicolas Angellier, Laurent Ulmet, Sabine Caré |
---|---|
Přispěvatelé: | Groupe d'Etudes des Matériaux Hétérogènes (GEMH), Université de Limoges (UNILIM)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM), Laboratoire Navier (navier umr 8205), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0106 biological sciences
Work (thermodynamics) Thermodynamic equilibrium Analytical chemistry Plant Science 01 natural sciences Industrial and Manufacturing Engineering 010608 biotechnology Mass transfer [SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] General Materials Science Boundary value problem Diffusion (business) Physics::Atmospheric and Oceanic Physics 040101 forestry Mass transfer coefficient Moisture Chemistry Mass Transfer Process Finite difference method Forestry 04 agricultural and veterinary sciences Mechanics Diffusion Property Diffusion Parameter Equilibrium Moisture Content 0401 agriculture forestry and fisheries Standard Identification |
Zdroj: | Wood Science and Technology Wood Science and Technology, Springer Verlag, 2017, 51 (4), pp.811-830. ⟨10.1007/s00226-017-0898-5⟩ |
ISSN: | 0043-7719 1432-5225 |
Popis: | International audience; The scope of this paper is an experimental characterization of diffusion parameters for wood material. Based on a nonlinear mass transfer algorithm, the present study focuses on the need to capture experimental moisture profiles in the sample, along with its evolution in weighting during both the desorption and adsorption phases, especially when the moisture content of the samples is far from the equilibrium state inducing a great gradient between heart and exchange surfaces of specimen. These moisture profiles are derived by means of a gammadensimetrylaboratory method based on the water adsorption of gamma rays. Determination of the diffusion parameters is obtained through optimizing a simulation by means of implementing the mass transfer kinetics into a finite difference method. Both the diffusion coefficient and convective exchange coefficient are deduced by considering a Nelder–Mead simplex inversion method. This work highlights the efficiency of the approach dedicated to uncoupling nonlinear diffusion in the cross sections from boundary conditions in terms of convective exchanges and equilibrium moisture. Scale effects and boundary conditions are also investigated herein. |
Databáze: | OpenAIRE |
Externí odkaz: |