Anatomy of a fluid pipe in the Norway Basin: Initiation, propagation and 3D shape

Autor: Régis Mourgues, D. Bureau, Christine Lauer, Didier Loggia, Christian Berndt, Sverre Planke, Stéphanie Gautier, Dimitri Laurent
Přispěvatelé: Bassins, Géosciences Montpellier, Université des Antilles et de la Guyane (UAG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles et de la Guyane (UAG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Oceanography Centre [Southampton] (NOC), University of Southampton, University of Oslo (UiO), Transferts en milieux poreux
Rok vydání: 2012
Předmět:
Zdroj: Marine Geology
Marine Geology, Elsevier, 2012, 332-334, pp.75-88. ⟨10.1016/j.margeo.2012.08.010⟩
ISSN: 0025-3227
DOI: 10.1016/j.margeo.2012.08.010
Popis: International audience; An exploration 3D seismic data set from the Gjallar Ridge off mid-Norway images a giant fluid seep structure 3 × 5 km wide, which connects to late Palaeocene magmatic sills at depth. Two of the pipes that have developed as hydrothermal vents reach all the way to the modern seafloor implying that they either were active much longer than the original hydrothermal activity or have been reactivated. We combine detailed seismic analysis of the northern pipe and sandbox modeling to constrain pipe initiation and propagation. Although both the seismic data and the sandbox models suggest that fluids at depth are focused through a vertical conduit, sandbox models show that fluids ascend and reach a critical depth migration where focused migration abruptly transforms into distributed fluid flow through unconsolidated sediments. This indicates that at this level the sediments are intensely deformed during pipe propagation, creating a V-shaped structure, i.e. an inverted cone at depth and a positive relief anomaly, 5 to 10 m high, at the seafloor, which is clearly identified on 3D seismic data. Comparison of the geometries observed in sandbox modeling with the seismically observed geometries of the Giant Gjallar Vent suggests that the Giant Gjallar Vent may be a proto-fluid seep at an early stage of its development, preceding the future collapse of the structure forming a seafloor depression. Our results imply that the Gjallar Giant Vent can be used as a window into the geological processes active in the deep parts of the Vøring Basin.
Databáze: OpenAIRE