Numerical construction of the Aizenman-Wehr metastate
Autor: | Federico Ricci-Tersenghi, A. Billoire, Juan J. Ruiz-Lorenzo, Victor Martin-Mayor, Giorgio Parisi, L. A. Fernandez, J. Moreno-Gordo, Enzo Marinari, Andrea Maiorano |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
Spin glass Física-Modelos matemáticos Statistical Mechanics (cond-mat.stat-mech) General Physics and Astronomy Thermodynamics FOS: Physical sciences Disordered Systems and Neural Networks (cond-mat.dis-nn) Condensed Matter - Disordered Systems and Neural Networks 01 natural sciences 010305 fluids & plasmas Physics and Astronomy (all) 0103 physical sciences Thermodynamic limit Metastate 010306 general physics Condensed Matter - Statistical Mechanics |
Zdroj: | Zaguán. Repositorio Digital de la Universidad de Zaragoza instname E-Prints Complutense. Archivo Institucional de la UCM E-Prints Complutense: Archivo Institucional de la UCM Universidad Complutense de Madrid Physical Review Letters |
Popis: | Chaotic size dependence makes it extremely difficult to take the thermodynamic limit in disordered systems. Instead, the metastate, which is a distribution over thermodynamic states, might have a smooth limit. So far, studies of the metastate have been mostly mathematical. We present a numerical construction of the metastate for the d=3 Ising spin glass. We work in equilibrium, below the critical temperature. Leveraging recent rigorous results, our numerical analysis gives evidence for a "dispersed" metastate, supported on many thermodynamic states. Comment: 5 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |