Numerical construction of the Aizenman-Wehr metastate

Autor: Federico Ricci-Tersenghi, A. Billoire, Juan J. Ruiz-Lorenzo, Victor Martin-Mayor, Giorgio Parisi, L. A. Fernandez, J. Moreno-Gordo, Enzo Marinari, Andrea Maiorano
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
E-Prints Complutense. Archivo Institucional de la UCM
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
Physical Review Letters
Popis: Chaotic size dependence makes it extremely difficult to take the thermodynamic limit in disordered systems. Instead, the metastate, which is a distribution over thermodynamic states, might have a smooth limit. So far, studies of the metastate have been mostly mathematical. We present a numerical construction of the metastate for the d=3 Ising spin glass. We work in equilibrium, below the critical temperature. Leveraging recent rigorous results, our numerical analysis gives evidence for a "dispersed" metastate, supported on many thermodynamic states.
Comment: 5 pages, 5 figures
Databáze: OpenAIRE