Recombinant turnip yellow mosaic virus coat protein as a potential nanocarrier
Autor: | Chuan Loo Wong, F.H. Tan, J.F. Ng, Noorjahan Banu Alitheen, C.Y. Yong, Khai Wooi Lee, J.C. Kong |
---|---|
Rok vydání: | 2021 |
Předmět: |
viruses
Peptide medicine.disease_cause complex mixtures Applied Microbiology and Biotechnology law.invention 03 medical and health sciences chemistry.chemical_compound Microscopy Electron Transmission law Escherichia coli medicine Denaturation (biochemistry) Tymovirus Guanidine 030304 developmental biology chemistry.chemical_classification 0303 health sciences Turnip yellow mosaic virus biology 030306 microbiology General Medicine biology.organism_classification Recombinant Proteins In vitro chemistry Recombinant DNA Biophysics Capsid Proteins Nanocarriers Biotechnology |
Zdroj: | Journal of Applied Microbiology. 131:2072-2080 |
ISSN: | 1365-2672 1364-5072 |
DOI: | 10.1111/jam.15048 |
Popis: | AIMS To display a short peptide (GSRSHHHHHH) at the C-terminal end of turnip yellow mosaic virus coat protein (TYMVc) and to study its assembly into virus-like particles (TYMVcHis6 VLPs). METHODS AND RESULTS In this study, recombinant TYMVcHis6 expressed in Escherichia coli self-assembled into VLPs of approximately 30-32 nm. SDS-PAGE and Western blot analysis of protein fractions from the immobilized metal affinity chromatography (IMAC) showed that TYMVcHis6 VLPs interacted strongly with nickel ligands in IMAC column, suggesting that the fusion peptide is protruding out from the surface of VLPs. These VLPs are highly stable over a wide pH range from 3·0 to 11·0 at different temperatures. At pH 11·0, specifically, the VLPs remained intact up to 75°C. Additionally, the disassembly and reassembly of TYMVcHis6 VLPs were studied in vitro. Dynamic light scattering and transmission electron microscopy analysis revealed that TYMVcHis6 VLPs were dissociated by 7 mol l-1 urea and 2 mol l-1 guanidine hydrochloride (GdnHCl) without impairing their reassembly property. CONCLUSIONS A 10-residue peptide was successfully displayed on the surface of TYMVcHis6 VLPs. This chimera demonstrated high stability under extreme thermal conditions with varying pH and was able to dissociate and reassociate into VLPs by chemical denaturants. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first C-terminally modified TYMVc produced in E. coli. The C-terminal tail which is exposed on the surface can be exploited as a useful site to display multiple copies of functional ligands. The ability of the chimeric VLPs to self-assemble after undergo chemical denaturation indicates its potential role to serve as a nanocarrier for use in targeted drug delivery. |
Databáze: | OpenAIRE |
Externí odkaz: |