mdclust—exploratory microarray analysis by multidimensional clustering

Autor: P. Dirschedl, Sylvia Merk, Martin Dugas, Susanne Breit
Rok vydání: 2004
Předmět:
Zdroj: Bioinformatics. 20:931-936
ISSN: 1367-4811
1367-4803
DOI: 10.1093/bioinformatics/bth009
Popis: Motivation: Unsupervised clustering of microarray data may detect potentially important, but not obvious characteristics of samples, for instance subgroups of diagnoses with distinct gene profiles or systematic errors in experimentation. Results: Multidimensional clustering (mdclust) is a method, which identifies sets of sample clusters and associated genes. It applies iteratively two-means clustering and score-based gene selection. For any phenotype variable best matching sets of clusters can be selected. This provides a method to identify gene–phenotype associations, suited even for settings with a large number of phenotype variables. An optional model based discriminant step may reduce further the number of selected genes. Availability: R-code and supplemental information available from http://martin-dugas.de/mdclust/ Supplementary information: http://martin-dugas.de/mdclust/
Databáze: OpenAIRE