Tyrosine hydroxylase binds tetrahydrobiopterin cofactor with negative cooperativity, as shown by kinetic analyses and surface plasmon resonance detection
Autor: | Arturo Muga, Aurora Martinez, Randi M. Svebak, Torgeir Flatmark, Bjørg Almås, Per M. Knappskog, Rosana Chehín, Sissel Vik Berge |
---|---|
Rok vydání: | 1999 |
Předmět: |
Conformational change
Tyrosine 3-Monooxygenase Protein Conformation Stereochemistry Cooperativity Ligands Biochemistry Cofactor Substrate Specificity Mice Apoenzymes Enzyme Stability medicine Animals Humans Surface plasmon resonance biology Tyrosine hydroxylase Chemistry Temperature Active site Cooperative binding Tetrahydrobiopterin Surface Plasmon Resonance Biopterin Recombinant Proteins Pterins Rats Kinetics biology.protein Cattle Protein Binding medicine.drug |
Zdroj: | European Journal of Biochemistry. 262:840-849 |
ISSN: | 1432-1033 0014-2956 |
DOI: | 10.1046/j.1432-1327.1999.00445.x |
Popis: | Kinetic studies of tetrameric recombinant human tyrosine hydroxylase isoform 1 (hTH1) have revealed properties so far not reported for this enzyme. Firstly, with the natural cofactor (6R)-Lerythro-5,6,7, 8-tetrahydrobiopterin (H4biopterin) a time-dependent change (burst) in enzyme activity was observed, with a half-time of about 20 s for the kinetic transient. Secondly, nonhyperbolic saturation behaviour was found for H4biopterin with a pronounced negative cooperativity (0.39h0.58; [S]0.5 = 24 +/- 4 microM). On phosphorylation of Ser40 by protein kinase A, the affinity for H4biopterin increased ([S]0.5 = 11 +/- 2 microM) and the negative cooperativity was amplified (h = 0.27 +/- 0.03). The dimeric C-terminal deletion mutant (Delta473-528) of hTH1 also showed negative cooperativity of H4biopterin binding (h = 0.4). Cooperativity was not observed with the cofactor analogues 6-methyl-5,6,7,8-tetrahydropterin (h = 0.9 +/- 0.1; Km = 62.7 +/- 5.7 microM) and 3-methyl-5,6,7, 8-tetrahydropterin (H43-methyl-pterin)(h = 1.0 +/- 0.1; Km = 687 +/- 50 microM). In the presence of 1 mM H43-methyl-pterin, used as a competitive cofactor analogue to BH4, hyperbolic saturation curves were also found for H4biopterin (h = 1.0), thus confirming the genuine nature of the kinetic negative cooperativity. This cooperativity was confirmed by real-time biospecific interaction analysis by surface plasmon resonance detection. The equilibrium binding of H4biopterin to the immobilized iron-free apoenzyme results in a saturable positive resonance unit (DeltaRU) response with negative cooperativity (h = 0.52-0.56). Infrared spectroscopic studies revealed a reduced thermal stability both of the apo-and the holo-hTH1 on binding of H4biopterin and Lerythro-dihydrobiopterin (H2biopterin). Moreover, the ligand-bound forms of the enzyme also showed a decreased resistance to limited tryptic proteolysis. These findings indicate that the binding of H4biopterin at the active site induces a destabilizing conformational change in the enzyme which could be related to the observed negative cooperativity. Thus, our studies provide new insight into the regulation of TH by the concentration of H4biopterin which may have significant implications for the physiological regulation of catecholamine biosynthesis in neuroendocrine cells. |
Databáze: | OpenAIRE |
Externí odkaz: |