Radial quadrature for multiexponential integrands
Autor: | Peter Gill, Siu-Hung Chien |
---|---|
Rok vydání: | 2003 |
Předmět: |
Physics::Computational Physics
Quadrature domains Mathematical analysis Gauss–Laguerre quadrature General Chemistry Tanh-sinh quadrature Gauss–Kronrod quadrature formula Computational Mathematics symbols.namesake Gauss–Jacobi quadrature symbols Gaussian quadrature Gauss–Hermite quadrature Mathematics Clenshaw–Curtis quadrature |
Zdroj: | Journal of Computational Chemistry. 24:732-740 |
ISSN: | 1096-987X 0192-8651 |
Popis: | We introduce a Gaussian quadrature, based on the polynomials that are orthogonal with respect to the weight function ln2x on the interval [0, 1], which is suitable for the evaluation of radial integrals. The quadrature is exact if the non-Jacobian part of the integrand is a linear combination of a geometric sequence of exponential functions. We find that the new scheme is a useful alternative to existing approaches, particularly for integrands that exhibit multiexponential behavior. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 732–740, 2003 |
Databáze: | OpenAIRE |
Externí odkaz: |