A review of gas-surface interaction models for orbital aerodynamics applications
Autor: | Steve Edmondson, Sarah J. Haigh, R. Outlaw, Daniel García-Almiñana, Claire Huyton, Valentín Cañas, Georg H. Herdrich, Luciana Sinpetru, R. M. Dominguez, A. Conte, Nicholas Crisp, Stephen D. Worrall, Peter Roberts, Jens Frederik Dalsgaard Nielsen, C. Traub, Jonathan Becedas, Morten Bisgaard, Brandon Holmes, Stefanos Fasoulas, Katharine Smith, Simon Christensen, Badia Belkouchi, Francesco Romano, Dhiren Kataria, Vitor Toshiyuki Abrao Oiko, J. S. Perez, Rachel Villain, Yung-An Chan, Miquel Sureda, Silvia Rodriguez-Donaire, A. Mølgaard, Sabrina Livadiotti |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. TUAREG - Turbulence and Aerodynamics in Mechanical and Aerospace Engineering Research Group, Universitat Politècnica de Catalunya. L'AIRE - Laboratori Aeronàutic i Industrial de Recerca i Estudis |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Computer science
Computation FOS: Physical sciences Aerospace Engineering Context (language use) 02 engineering and technology Terra (Planeta) -- Òrbita Residual Gas-surface interaction Mecànica orbital 01 natural sciences 010305 fluids & plasmas Aerodynamics Aerodinàmica 0203 mechanical engineering Physics - Space Physics Simple (abstract algebra) 0103 physical sciences Orbital mechanics Statistical physics Geocentric orbit 020301 aerospace & aeronautics Mechanical Engineering Very low earth orbit Space Physics (physics.space-ph) Aerodynamic force 13. Climate action Mechanics of Materials Física::Astronomia i astrofísica [Àrees temàtiques de la UPC] Earth (Planet)--Orbit Orbital aerodynamics Cube Aeronàutica i espai::Astronàutica [Àrees temàtiques de la UPC] |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Progress in Aerospace Sciences |
ISSN: | 0376-0421 |
Popis: | Renewed interest in Very Low Earth Orbits (VLEO) - i.e. altitudes below 450 km - has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications. Journal paper (accepted for publication in "Progress in Aerospace Sciences") Replacement: Corrected typos in Equations |
Databáze: | OpenAIRE |
Externí odkaz: |