Uniform time of existence for the alpha Euler equations
Autor: | H. J. Nussenzveig Lopes, Adriana Valentina Busuioc, Dragoş Iftimie, M. C. Lopes Filho |
---|---|
Přispěvatelé: | Équations aux dérivées partielles, analyse (EDPA), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-13-BS01-0003,DYFICOLTI,DYnamique des Fluides, Couches Limites, Tourbillons et Interfaces(2013), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn]
010102 general mathematics Mathematical analysis Interval (mathematics) 01 natural sciences Domain (mathematical analysis) Non-Newtonian fluid Euler equations 010101 applied mathematics symbols.namesake Bounded function Convergence (routing) symbols A priori and a posteriori [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Boundary value problem 0101 mathematics Analysis ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Journal of Functional Analysis Journal of Functional Analysis, Elsevier, 2016, 271 (5), pp.1341-1375. ⟨10.1016/j.jfa.2016.06.006⟩ |
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2016.06.006⟩ |
Popis: | We consider the α-Euler equations on a bounded three-dimensional domain with frictionless Navier boundary conditions. Our main result is the existence of a strong solution on a positive time interval, uniform in α, for α sufficiently small. Combined with the convergence result in [6], this implies convergence of solutions of the α-Euler equations to solutions of the incompressible Euler equations when α→0. In addition, we obtain a new result on local existence of strong solutions for the incompressible Euler equations on bounded three-dimensional domains. The proofs are based on new a priori estimates in conormal spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |