Uniform time of existence for the alpha Euler equations

Autor: H. J. Nussenzveig Lopes, Adriana Valentina Busuioc, Dragoş Iftimie, M. C. Lopes Filho
Přispěvatelé: Équations aux dérivées partielles, analyse (EDPA), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-13-BS01-0003,DYFICOLTI,DYnamique des Fluides, Couches Limites, Tourbillons et Interfaces(2013), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Journal of Functional Analysis
Journal of Functional Analysis, Elsevier, 2016, 271 (5), pp.1341-1375. ⟨10.1016/j.jfa.2016.06.006⟩
ISSN: 0022-1236
1096-0783
DOI: 10.1016/j.jfa.2016.06.006⟩
Popis: We consider the α-Euler equations on a bounded three-dimensional domain with frictionless Navier boundary conditions. Our main result is the existence of a strong solution on a positive time interval, uniform in α, for α sufficiently small. Combined with the convergence result in [6], this implies convergence of solutions of the α-Euler equations to solutions of the incompressible Euler equations when α→0. In addition, we obtain a new result on local existence of strong solutions for the incompressible Euler equations on bounded three-dimensional domains. The proofs are based on new a priori estimates in conormal spaces.
Databáze: OpenAIRE