Characterization and Modeling of LV Cables Considering External Parameters for Distribution Networks
Autor: | Marc Petit, Trung Dung Le, Ferréol Binot |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Technology
Control and Optimization Renewable Energy Sustainability and the Environment Computer science Ground Margin of error temperature Energy Engineering and Power Technology Grid Finite element method Characterization (materials science) Power (physics) external parameters distribution networks Control theory low voltage cables three-conductor model four-conductor model ground resistivity earthing resistances Electrical and Electronic Engineering Engineering (miscellaneous) Low voltage Energy (miscellaneous) Voltage |
Zdroj: | Energies; Volume 14; Issue 23; Pages: 7849 Energies, Vol 14, Iss 7849, p 7849 (2021) |
ISSN: | 1996-1073 |
DOI: | 10.3390/en14237849 |
Popis: | In response to the climate emergency, new uses are plugged to low voltage (LV) electrical networks. The development of self-consumption complicates the LV grid operation, and force distribution system operators (DSOs) to better model and characterize their networks. DSOs mainly use a three-conductor model (3 CM) to compute power flows, and consider error margins of 2% for voltage profiles to reflect their model inaccuracy. The characteristics of the future LV grids call into question these margins, and the models used. In this paper, a four-conductor model (4 CM), and an additional model named 4 CMext, that considers external parameters (i.e., cable temperature, ground electrical resistivity, and value/number of the earthing resistances) are proposed. The best model for cable characterization and voltage profile calculation is chosen; the 4 CMext is more adapted for the characterization, and corresponds with the finite element model, with an error margin of 4%, experimental measurements of 15%, and French cable manufacturer data of 0.5%. For the voltage profile, the 4 CMext provides a more detailed view of the critical cases that could lead to a violation of the limits of the EN 50160 standard than 3 CM and 4 CM. Violations of high or low voltages are underestimated by two to six times by the 3 CM and 4 CM. Not considering external parameters can lead to a voltage profile error of above 3%. In this paper, we recommend that DSOs use the 4 CMext to represent LV networks, which would allow LV networks to be used closer to their physical limits, and avoid or postpone network reinforcements. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |