Learning Action-oriented grasping for manipulation

Autor: Wajahat M. Qazi, M Usman Sarwar, Jan Rosell, Muhayy Ud Din, Imran Zahoor
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. SIR - Service and Industrial Robotics
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
ETFA
Popis: Complex manipulation tasks require grasping strategies that simultaneously satisfy the stability and the semantic constraints that have to be satisfied for an action to be feasible, referred as action-oriented semantic grasp strategies. This study develops a framework using machine learning techniques to compute action-oriented semantic grasps. It takes a 3D model of the object and the action to be performed as input and provides a vector of action-oriented semantic grasps. We evaluate the performance of machine learning (particu- larly classification techniques) to determine which approaches perform better for this problem. Using the best approaches, a multi-model classification technique is developed. The proposed approach is evaluated in simulation to grasp different kitchenobjects using a parallel gripper. The results show that multi-model classification approach enhances the prediction accuracy. The implemented system can be used as to automate the data labeling process required for deep learning approaches.
Databáze: OpenAIRE