Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy
Autor: | Kai Ling Yu, Wei Hsin Chen, Hsiu Ju Lo, Hwai Chyuan Ong, Herng Kuang Sheen |
---|---|
Rok vydání: | 2021 |
Předmět: |
010504 meteorology & atmospheric sciences
Chemistry Health Toxicology and Mutagenesis Environmental pollution General Medicine 010501 environmental sciences Straw Toxicology Torrefaction Pulp and paper industry 01 natural sciences Pollution Hydrolysis Biofuel Bioenergy Biochar Edible Grain Environmental Pollution Sweet sorghum Sorghum Triticum 0105 earth and related environmental sciences |
Zdroj: | Environmental Pollution. 285:117196 |
ISSN: | 0269-7491 |
DOI: | 10.1016/j.envpol.2021.117196 |
Popis: | This research aims to study the wet torrefaction (WT) and saccharification of sorghum distillery residue (SDR) towards hydrochar and bioethanol production. The experiments are designed by Box-Behnken design from response surface methodology where the operating conditions include sulfuric acid concentration (0, 0.01, and 0.02 M), amyloglucosidase concentration (36, 51, and 66 IU), and saccharification time (120, 180, and 240 min). Compared to conventional dry torrefaction, the hydrochar yield is between 13.24 and 14.73%, which is much lower than dry torrefaction biochar (yield >50%). The calorific value of the raw SDR is 17.15 MJ/kg, which is significantly enhanced to 22.36–23.37 MJ/kg after WT. When the sulfuric acid concentration increases from 0 to 0.02 M, the glucose concentration in the product increases from 5.59 g/L to 13.05 g/L. The prediction of analysis of variance suggests that the best combination to maximum glucose production is 0.02 M H2SO4, 66 IU enzyme concentration, and 120 min saccharification time, and the glucose concentration is 30.85 g/L. The maximum bioethanol concentration of 19.21 g/L is obtained, which is higher than those from wheat straw (18.1 g/L) and sweet sorghum residue (16.2 g/L). A large amount of SDR is generated in the kaoliang liquor production process, which may cause environmental problems if it is not appropriately treated. This study fulfills SDR valorization for hydrochar and bioenergy to lower environmental pollution and even achieve a circular economy. |
Databáze: | OpenAIRE |
Externí odkaz: |