Automating Quality Measures for Heart Failure Using Natural Language Processing: A Descriptive Study in the Department of Veterans Affairs

Autor: Jennifer H. Garvin, Paul A. Heidenreich, Mary K. Goldstein, Megha Kalsy, Michael E. Matheny, Bruce E. Bray, Ruth M. Reeves, Dan Bolton, Natalie Kelly, Glenn T. Gobbel, Stéphane M. Meystre, Julia Heavirland, Youngjun Kim, Andrew Redd
Rok vydání: 2017
Předmět:
Zdroj: JMIR Medical Informatics
ISSN: 2291-9694
Popis: Background: We developed an accurate, stakeholder-informed, automated, natural language processing (NLP) system to measure the quality of heart failure (HF) inpatient care, and explored the potential for adoption of this system within an integrated health care system. Objective: To accurately automate a United States Department of Veterans Affairs (VA) quality measure for inpatients with HF. Methods: We automated the HF quality measure Congestive Heart Failure Inpatient Measure 19 (CHI19) that identifies whether a given patient has left ventricular ejection fraction (LVEF)
Databáze: OpenAIRE