Highly Enhanced Photoreductive Degradation of Polybromodiphenyl Ethers with g-C3N4/TiO2 under Visible Light Irradiation
Autor: | Xuefeng Hu, Wei-Dong Ye, Ying-Ying Shao, Chunyan Sun, Chu-Lin Liu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
g-C3N4
TiO2 photoreductive polybromodiphenyl ethers visible light Materials science Diffuse reflectance infrared fourier transform Band gap Scanning electron microscope General Chemical Engineering Analytical chemistry 02 engineering and technology 010402 general chemistry Photochemistry 01 natural sciences Article lcsh:Chemistry Reaction rate X-ray photoelectron spectroscopy General Materials Science Absorption (electromagnetic radiation) 021001 nanoscience & nanotechnology 0104 chemical sciences lcsh:QD1-999 Transmission electron microscopy 0210 nano-technology Visible spectrum |
Zdroj: | Nanomaterials Nanomaterials; Volume 7; Issue 4; Pages: 76 Nanomaterials, Vol 7, Iss 4, p 76 (2017) |
ISSN: | 2079-4991 |
Popis: | A series of high activity photocatalysts g-C3N4-TiO2 were synthesized by simple one-pot thermal transformation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller (BET) surface area, and ultraviolet–visible diffuse reflectance spectroscopy (UV-Vis-DRS). The g-C3N4-TiO2 samples show highly improved photoreductive capability for the degradation of polybromodiphenyl ethers compared with g-C3N4 under visible light irradiation. Among all the hybrids, 0.02-C3N4-TiO2 with 2 wt % g-C3N4 loaded shows the highest reaction rate, which is 15 times as high as that in bare g-C3N4. The well-matched band gaps in heterojunction g-C3N4-TiO2 not only strengthen the absorption intensity, but also show more effective charge carrier separation, which results in the highly enhanced photoreductive performance under visible light irradiation. The trapping experiments show that holetrapping agents largely affect the reaction rate. The rate of electron accumulation in the conductive band is the rate-determining step in the degradation reaction. A possible photoreductive mechanism has been proposed. |
Databáze: | OpenAIRE |
Externí odkaz: |