Anomaly Detection in Electromechanical Systems by means of Deep-Autoencoder
Autor: | Angel Fernandez-Sobrino, Victor Martinez-Viol, Miguel Delgado-Prieto, Francisco Arellano-Espitia, Roque Alfredo Osornio-Rios |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Enginyeria Electrònica, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group |
Rok vydání: | 2021 |
Předmět: |
Electromechanical systems
business.industry Enginyeria electrònica [Àrees temàtiques de la UPC] Deep learning Pattern recognition Anomaly detection Deep-learning Autoencoder Deep-autoencoder Dispositius electromecànics Artificial intelligence business Geology Electromechanical decives Aprenentatge profund |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
DOI: | 10.1109/etfa45728.2021.9613529 |
Popis: | © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works Anomaly detection in manufacturing processes is one of the main concerns in the new era of the Industry 4.0 framework. The detection of uncharacterized events represents a major challenge within the operation monitoring of electrical rotatory machinery. In this regard, although several machine learning techniques have been classically considered, the recent appearance of deep-learning approaches represents an opportunity in the field to increase the anomaly detection capabilities in front of complex electromechanical systems. However, each anomaly detection technique considers its own data interpretability and modelling strategy, which should be analyzed in front of the specificities of the data generated in an industrial environment and, specifically, by an electromechanical actuator. Thus, in this study, a comparison framework is considered including multiple fault scenarios in order to analyze the performance of four representative anomaly detection techniques, that is, one-class support vector machine, k-nearest neighbor, Gaussian mixture model and, finally, deep-autoencoder. The experimental results suggest that the use of the deep-autoencoder in the task of detecting anomalies of operation in electromechanical systems has a higher performance compared to the state of the art methods. |
Databáze: | OpenAIRE |
Externí odkaz: |