Distance edge-colourings and matchings

Autor: Putra Manggala, Ross J. Kang
Jazyk: angličtina
Předmět:
Zdroj: Discrete Applied Mathematics. (16-17):2435-2439
ISSN: 0166-218X
DOI: 10.1016/j.dam.2012.07.001
Popis: We consider a distance generalisation of the strong chromatic index and the maximum induced matching number. We study graphs of bounded maximum degree and Erdős–Rényi random graphs. We work in three settings. The first is that of a distance generalisation of an Erdős–Nešetřil problem. The second is that of an upper bound on the size of a largest distance matching in a random graph. The third is that of an upper bound on the distance chromatic index for sparse random graphs. One of our results gives a counterexample to a conjecture of Skupień.
Databáze: OpenAIRE