Infinite Two-dimensional Strong Prefix Codes: characterization and properties

Autor: Dora Giammarresi, Marcella Anselmo, Maria Madonia
Přispěvatelé: Università degli Studi di Salerno (UNISA), Università degli Studi di Roma Tor Vergata [Roma], Università degli studi di Catania [Catania], Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Antonio E. Porreca, TC 1, WG 1.5
Rok vydání: 2017
Předmět:
Zdroj: Cellular Automata and Discrete Complex Systems ISBN: 9783319586304
AUTOMATA
Lecture Notes in Computer Science
23th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA)
23th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2017, Milan, Italy. pp.19-31, ⟨10.1007/978-3-319-58631-1_2⟩
Popis: Part 2: Regular Papers; International audience; A two-dimensional code is defined as a set of rectangular pictures over an alphabet $\varSigma $ such that any picture over $\varSigma $ is tilable in at most one way with pictures in X. It is in general undecidable whether a set of pictures is a code, even in the finite case. Recently, finite strong prefix codes were introduced in [3] as a family of decidable picture codes. In this paper we study infinite strong prefix codes and give a characterization for the maximal ones based on iterated extensions. Moreover, we prove some properties regarding the measure of these codes.
Databáze: OpenAIRE