Popis: |
Motivated by recent studies of bifurcations in liquid crystals cells [1,2] we consider a nonlinear pendulum ordinary differential equation in the bounded interval $(-L, L)$ with non-homogeneous mixed boundary conditions (Dirichlet an one end of the interval, Neumann at the other) and study the bifurcation diagram of its solutions having as bifurcation parameter the size of the interval, $2L$, and using techniques from phase space analysis, time maps, and asymptotic estimation of integrals, complemented by appropriate numerical evidence. |