Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis

Autor: Alexandre Seuret, Matthieu Barreau, Frédéric Gouaisbaut, Carsten W. Scherer
Přispěvatelé: Laboratoire d'analyse et d'architecture des systèmes (LAAS), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J), Department of Mathematics [Stuttgart], University of Stuttgart, Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Institut National Polytechnique (Toulouse) (Toulouse INP), ANR-15-CE23-0014,SCIDIS,Stabilité et commande de systèmes de dimension infinie(2015), Division of Decision and Control Systems - School of Electrical Engineering and Computer Science, Royal Institute of Technology [Stockholm] (KTH ), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)
Rok vydání: 2020
Předmět:
0209 industrial biotechnology
Differential equation
02 engineering and technology
Linear matrix
020901 industrial engineering & automation
Quadratic equation
Mathematics - Analysis of PDEs
Distributed parameter system
Robustness (computer science)
0202 electrical engineering
electronic engineering
information engineering

FOS: Mathematics
Applied mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Mathematics - Optimization and Control
Mathematics
020208 electrical & electronic engineering
Distributed Parameter Systems
Dissipation inequality
Control and Systems Engineering
Optimization and Control (math.OC)
Ordinary differential equation
IQCs
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Robustness analysis
Coupled ODE/PDE
Stability theorem
Analysis of PDEs (math.AP)
Zdroj: IFAC World Congress
IFAC World Congress, Jul 2020, Berlin, Germany
DOI: 10.48550/arxiv.2003.06283
Popis: International audience; This paper proposes a framework to assess the stability of an ordinary differential equation which is coupled to a 1D-partial differential equation (PDE). The stability theorem is based on a new result on Integral Quadratic Constraints (IQCs) and expressed in terms of two linear matrix inequalities with a moderate computational burden. The IQCs are not generated using dissipation inequalities involving the whole state of an infinite-dimensional system, but by using projection coefficients of the infinite-dimensional state. This permits to generalize our robustness result to many other PDEs. The proposed methodology is applied to a time-delay system and numerical results comparable to those in the literature are obtained.
Databáze: OpenAIRE