Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model
Autor: | W.T. Lui, Ching Yan Chu, P.S. Ng, H. Xu, Michael S. Rogers, Chi Chiu Wang |
---|---|
Rok vydání: | 2008 |
Předmět: |
Pathology
medicine.medical_specialty Angiogenesis Endometriosis Angiogenesis Inhibitors Mice SCID Epigallocatechin gallate Biology Endometrium Catechin Neovascularization chemistry.chemical_compound Mice Peritoneum medicine Animals Humans Vitamin E Microvessel Cell Proliferation Neovascularization Pathologic Tea Microcirculation Rehabilitation Obstetrics and Gynecology Vascular endothelial growth factor Vascular endothelial growth factor A Disease Models Animal medicine.anatomical_structure Reproductive Medicine chemistry Female medicine.symptom |
Zdroj: | Human reproduction (Oxford, England). 24(3) |
ISSN: | 1460-2350 |
Popis: | The development of new blood vessels plays an essential role in growth and survival of endometriosis. Epigallocatechin gallate (EGCG) from green tea has powerful anti-angiogenic properties and our aim was to evaluate these properties in experimental endometriosis.Eutopic endometrium from endometriosis patients was transplanted s.c. to severely compromised immunodeficient mice, randomly treated i.p. with EGCG (anti-angiogenic and -oxidant), Vitamin E (a non-angiogenic antioxidant) or saline for 2 weeks. The endometrial implant, including adjacent host outer skin and subcutaneous layers plus inner abdominal muscle and peritoneum, was collected. New microvessels were determined by species-specific immunohistochemistry. Angiogenic factors in lesions and abdominal muscle were detected by quantitative real-time PCR. Apoptosis was studied by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling and quantitative real-time PCR. In saline control, endometrial implants developed new blood vessels with proliferating glandular epithelium and were tightly adhered to host subcutaneous and abdominal muscle layers. After EGCG, endometriotic lesions were smaller than control (P0.05), and glandular epithelium was smaller and eccentrically distributed. Angiogenesis in lesions from the implant and adjacent tissues was under-developed, and microvessel size and density were lower (both P0.01) than control. mRNA for angiogenic vascular endothelial growth factor A, but not hypoxia inducible factor 1, alpha subunit, was significantly down-regulated in lesions after EGCG (P0.05). In addition, apoptosis in the lesions was more obvious, and nuclear factor kappa B and mitogen activated protein kinase 1 mRNA levels were up-regulated (P0.05) after EGCG treatment. No differences were observed with Vitamin E treatment.EGCG significantly inhibits the development of experimental endometriosis through anti-angiogenic effects. |
Databáze: | OpenAIRE |
Externí odkaz: |