Elliptic classes on Langlands dual flag varieties
Autor: | Andrzej Weber, Richárd Rimányi |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Applied Mathematics General Mathematics Langlands dual group Mathematics::Algebraic Topology Characteristic class Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Homogeneous FOS: Mathematics 14N15 58J26 14C17 Mathematics::Representation Theory Algebraic Geometry (math.AG) Flag (geometry) Mathematics |
Zdroj: | Communications in Contemporary Mathematics. 24 |
ISSN: | 1793-6683 0219-1997 |
DOI: | 10.1142/s0219199721500140 |
Popis: | Characteristic classes of Schubert varieties can be used to study the geometry and the combinatorics of homogeneous spaces. We prove a relation between elliptic classes of Schubert varieties on a generalized full flag variety and those on its Langlands dual. This new symmetry is motivated by 3D mirror symmetry, and it is only revealed if Schubert calculus is elevated from cohomology or K theory to the elliptic level. |
Databáze: | OpenAIRE |
Externí odkaz: |