Equilibrated stress reconstructions for linear elasticity problems with application to a posteriori error analysis
Autor: | Alexandre Ern, Daniele Antonio Di Pietro, Rita Riedlbeck |
---|---|
Přispěvatelé: | Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la mécanique et Applications industrielles (IMSIA - UMR 9219), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Simulation for the Environment: Reliable and Efficient Numerical Algorithms (SERENA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Clément Cancès, Pascal Omnes, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-EDF R&D (EDF R&D) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Arnold–Falk–Winther finite element
Cauchy stress tensor Arnold–Winther finite element Linear elasticity linear elasticity Geometry 010103 numerical & computational mathematics Mixed finite element method 01 natural sciences Symmetry (physics) Finite element method Mathematics::Numerical Analysis 010101 applied mathematics Constraint (information theory) Stress (mechanics) Applied mathematics A priori and a posteriori equilibrated stress reconstruction 0101 mathematics a posteriori error estimate [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Mathematics |
Zdroj: | Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects Clément Cancès; Pascal Omnes. Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects, 199, pp.293-301, 2017, Springer Proceedings in Mathematics & Statistics, 978-3-319-57397-7. ⟨10.1007/978-3-319-57397-7⟩ Springer Proceedings in Mathematics & Statistics ISBN: 9783319573960 |
DOI: | 10.1007/978-3-319-57397-7⟩ |
Popis: | International audience; We present an a posteriori error estimate for the linear elasticity problem. The estimate is based on an equilibrated reconstruction of the Cauchy stress tensor, which is obtained from mixed finite element solutions of local Neumann problems. We propose two different reconstructions, one using Arnold–Winther mixed finite element spaces providing a symmetric stress tensor and one using Arnold–Falk– Winther mixed finite element spaces with a weak symmetry constraint. The performance of the estimate is illustrated on a numerical test with analytical solution. |
Databáze: | OpenAIRE |
Externí odkaz: |