COLLECTIVE COORDINATE ACTION FOR CHARGED SIGMA-MODEL VORTICES IN FINITE GEOMETRIES
Autor: | Theodore J. Allen |
---|---|
Rok vydání: | 1993 |
Předmět: |
High Energy Physics - Theory
Physics Nuclear and High Energy Physics Field (physics) Sigma model FOS: Physical sciences General Physics and Astronomy Duality (optimization) Astronomy and Astrophysics Quantum Hall effect Schrödinger field symbols.namesake Classical mechanics High Energy Physics - Theory (hep-th) Variational principle Fractional quantum Hall effect symbols Wave function |
Zdroj: | Modern Physics Letters A. :1815-1820 |
ISSN: | 1793-6632 0217-7323 |
DOI: | 10.1142/s0217732393001537 |
Popis: | In this Letter the method of Lund is applied to formulate a variational principle for the motion of charged vortices in an effective non-linear Schr\"{o}dinger field theory describing finite size two-dimensional quantum Hall samples under the influence of an arbitrary perpendicular magnetic field. Freezing out variations in the modulus of the effective field yields a $U(1)$ sigma-model. A duality transformation on the sigma-model reduces the problem to finding the Green function for a related electrostatics problem. This duality illuminates the plasma analogy to the Laughlin wave function. Comment: 7 pp., Plain TeX (macros included), MAD/TH-92-03 |
Databáze: | OpenAIRE |
Externí odkaz: |