Analytic continuation for multiple zeta values using symbolic representations

Autor: Christophe Vignat, Tanay Wakhare, Lin Jiu
Přispěvatelé: Department of Mathematics [Tulane, New Orleans], Tulane University, Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics, University of Maryland
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Number Theory
International Journal of Number Theory, World Scientific Publishing, 2020, 16 (03), pp.579-602. ⟨10.1142/S1793042120500293⟩
ISSN: 1793-0421
DOI: 10.1142/S1793042120500293⟩
Popis: We introduce a symbolic representation of $r$-fold harmonic sums at negative indices. This representation allows us to recover and extend some recent results by Duchamp et al., such as recurrence relations and generating functions for these sums. This approach is also applied to the study of the family of extended Bernoulli polynomials, which appear in the computation of harmonic sums at negative indices. It also allows us to reinterpret the Raabe analytic continuation of the multiple zeta function as both a constant term extension of Faulhaber's formula, and as the result of a natural renormalization procedure for Faulhaber's formula.
Comment: 22 pages, comments are welcome
Databáze: OpenAIRE