Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2
Autor: | Carlos Villacorta-Martin, Shaghayegh Farhangmehr, Ryan M. Hekman, Mohsan Saeed, Carlos Perea-Resa, Robert A. Davey, Andrew Emili, Jian Zhao, Peter E.A. Ash, Raghuveera Kumar Goel, Benjamin C. Blum, Andrew A. Wilson, Benjamin J. Blencowe, Ulrich Braunschweig, Benjamin Wolozin, Andrew Tilston-Lunel, Darrell N. Kotton, Ji-Xin Cheng, Avik Basu, Alexandra Mora-Martin, Esther Bullitt, Rhiannon B. Werder, Mark E. McComb, Dmitry A. Kretov, Dzmitry Padhorny, Sandeep Ojha, Shawn M. Lyons, Konstantinos D. Alysandratos, Jessie Huang, Anne Hinds, Valentina Perissi, J. J. Patten, Ahmed Youssef, Xaralabos Varelas, John H Connor, Dima Kozakov, Mamta Verma, Dante Bolzan, Indranil Paul, Ellen L Suder, Eric J. Burks, Matthew D. Layne, Elke Mühlberger, Stefan Wuchty, Adam J. Hume, Daniel Cifuentes, Sadhna Phanse, Julian H. Kwan, Michael D. Blower, Kristine M. Abo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Cell cycle checkpoint
Proteome Cell pathways Drug Evaluation Preclinical 0302 clinical medicine antivirals Cytopathogenic Effect Viral Chlorocebus aethiops Induced pluripotent stem cell Pathogen Cytoskeleton mass spectrometry 0303 health sciences pathogenesis Phosphoproteomics phosphoproteomics Translation (biology) respiratory system Protein Transport medicine.anatomical_structure Signal Transduction Resource Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Induced Pluripotent Stem Cells Lung injury Biology Antiviral Agents Virus 03 medical and health sciences medicine Animals Humans Vero Cells Molecular Biology 030304 developmental biology time course Innate immune system Alveolar type Host (biology) SARS-CoV-2 Correction COVID-19 pneumocytes Cell Biology Phosphoproteins Virology infection COVID-19 Drug Treatment Alveolar Epithelial Cells 030217 neurology & neurosurgery |
Zdroj: | Molecular Cell |
ISSN: | 1097-2765 |
DOI: | 10.1016/j.molcel.2020.11.028 |
Popis: | Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system. Graphical Abstract Highlights • SARS-CoV-2 infection in induced lung cells is characterized by phosphoproteomics • Analysis of response reveals host cell signaling and protein expression profile • Comparison to studies in undifferentiated cell lines shows unique pathology in iAT2s • Systems-level predictions find druggable pathways that can impede viral life cycle Hekman et al. describe how a layer of primary stem cells (iAT2s) recapitulating lung biology responds to infection with SARS-CoV-2. They compare their work to previous studies with immortalized cell lines. Their data predict what effect the virus has on a lung cell and which drugs may slow infection. |
Databáze: | OpenAIRE |
Externí odkaz: |