On mixed polynomials of bidegree (n, 1)

Autor: Mohamed Elkadi, André Galligo
Přispěvatelé: Laboratoire Jean Alexandre Dieudonné (JAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Géométrie , Algèbre, Algorithmes (GALAAD2), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Jean Alexandre Dieudonné (LJAD), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Popis: Specifying the bidegrees (n, m) of mixed polynomials P (z, ¯ z) of the single complex variable z, with complex coefficients, allows to investigate interesting roots structures and counting; intermediate between complex and real algebra. Multivariate mixed polynomials appeared in recent papers dealing with Milnor fibrations, but in this paper we focus on the univariate case and m = 1, which is closely related to the important subject of harmonic maps. Here we adapt, to this setting, two algorithms of computer algebra: Vandermonde interpolation and a bissection-exclusion method for root isolation. Implemented in Maple, they are used to explore some interesting classes of examples.
Databáze: OpenAIRE