Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery
Autor: | Tetsuya Tsukada, Masaki Sato, Yoshitaka Nagano, Takashi Izumi, Asuka Elisabeth Kropp, Masahiro Nishihori, Toshihiko Wakabayashi |
---|---|
Rok vydání: | 2020 |
Předmět: |
Operating Rooms
Workstation Computer science Interface (computing) Contactless interface 02 engineering and technology Neurosurgical Procedures 030218 nuclear medicine & medical imaging law.invention User-Computer Interface 0302 clinical medicine law Computer vision Zoom Gestures Angiography Signal Processing Computer-Assisted General Medicine Equipment Design Computer Graphics and Computer-Aided Design Computer Science Applications Original Article Computer Vision and Pattern Recognition Algorithms Image View Movement 0206 medical engineering Biomedical Engineering Neurosurgery Health Informatics Voice command device 03 medical and health sciences Mode (computer interface) Imaging Three-Dimensional Computer Systems Humans Radiology Nuclear Medicine and imaging Computer Simulation Endovascular treatment Kinect business.industry Computers Volume rendering Intracranial Aneurysm Endovascular neurosurgery Hand 020601 biomedical engineering Gesture recognition Surgery Artificial intelligence business Software |
Zdroj: | International Journal of Computer Assisted Radiology and Surgery |
ISSN: | 1861-6429 |
Popis: | Purpose In endovascular neurosurgery, the operator often acquires three-dimensional (3D) images of the cerebral vessels. Although workstation reoperation is required in some situations during treatment, it leads to time loss because a sterile condition cannot be maintained and treatment must be temporarily interrupted. Therefore, a workstation reoperating system is required while maintaining the desired sterility. Methods A contactless operating interface using Kinect to control 3D images was developed via gesture recognition for endovascular neurosurgery and was applied to a 3D volume rendering technique (VRT) image reconstructed at the workstation. The left-hand movement determines the assigned functions, whereas the right-hand movement is used like a computer mouse to pan and zoom in/out. In addition to the interface, voice commands were used and assigned to digital operations, such as image view changes and mode signal changes. Results This system was used for the actual endovascular treatment of cerebral aneurysms and cerebral arteriovenous malformations. The operator and gesture were recognized without any problems. Using voice operation, it was possible to expeditiously set the VRT image back to the reference angle. Furthermore, it was possible to finely adjust gesture operations, including mouse operation, and treatment was completed while maintaining sterile conditions. Conclusion A contactless operating interface was developed by combining the existing workstation system with Kinect and voice recognition software, allowing surgeons to perform a series of operations, which are normally performed in a console room, while maintaining sterile conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s11548-021-02330-3. |
Databáze: | OpenAIRE |
Externí odkaz: |