A stomatal safety-efficiency trade-off constrains responses to leaf dehydration
Autor: | Ruihua Pan, Lawren Sack, Megan K. Bartlett, Grace P. John, Leila R. Fletcher, Christian Henry, Christine Scoffoni |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Stomatal conductance Ecophysiology Science Plant physiology General Physics and Astronomy 02 engineering and technology Environment Photosynthesis California Article General Biochemistry Genetics and Molecular Biology 03 medical and health sciences Ecosystem lcsh:Science Multidisciplinary biology fungi Water food and beverages General Chemistry 15. Life on land 021001 nanoscience & nanotechnology biology.organism_classification Droughts Plant Leaves 030104 developmental biology Productivity (ecology) Agronomy Plant Stomata Environmental science lcsh:Q Flowering plant 0210 nano-technology Cycling Water use Woody plant |
Zdroj: | Nature Communications, Vol 10, Iss 1, Pp 1-9 (2019) Nature Communications Nature communications, vol 10, iss 1 |
ISSN: | 2041-1723 |
Popis: | Stomata, the microvalves on leaf surfaces, exert major influences across scales, from plant growth and productivity to global carbon and water cycling. Stomatal opening enables leaf photosynthesis, and plant growth and water use, whereas plant survival of drought depends on stomatal closure. Here we report that stomatal function is constrained by a safety-efficiency trade-off, such that species with greater stomatal conductance under high water availability (gmax) show greater sensitivity to closure during leaf dehydration, i.e., a higher leaf water potential at which stomatal conductance is reduced by 50% (Ψgs50). The gmax - Ψgs50 trade-off and its mechanistic basis is supported by experiments on leaves of California woody species, and in analyses of previous studies of the responses of diverse flowering plant species around the world. Linking the two fundamental key roles of stomata—the enabling of gas exchange, and the first defense against drought—this trade-off constrains the rates of water use and the drought sensitivity of leaves, with potential impacts on ecosystems. Stomata enable gas exchange for photosynthesis but close to promote survival during drought. Here, Henry et al. provide evidence for a safety-efficiency trade-off whereby plants with greater stomatal conductance under well-watered conditions are more sensitive to stomatal closure during dehydration. |
Databáze: | OpenAIRE |
Externí odkaz: |