Inhibition of prolactin as a management tool in dairy husbandry

Autor: N. Vanacker, Pierre Lacasse, Xin Zhao, Marion Boutinaud
Přispěvatelé: Sherbrooke Research and Development Centre, Agriculture and Agri-Food [Ottawa] (AAFC), Department of Animal Science, McGill University = Université McGill [Montréal, Canada], Département de Biologie, Faculté des Sciences, Université M'Hamed Bougara Boumerdes (UMBB), Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), Agriculture and Agri-Food Canada (AAFC), McGill University, Université M'Hamed Bougara de Boumerdes, Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: animal
animal, Published by Elsevier (since 2021) / Cambridge University Press (until 2020), 2019, 13 (S1), pp.s35-s41. ⟨10.1017/S1751731118003312⟩
animal, Cambridge University Press (CUP), 2019, 13 (S1), pp.s35-s41. ⟨10.1017/S1751731118003312⟩
Animal
Animal, Published by Elsevier (since 2021) / Cambridge University Press (until 2020), 2019, 13 (S1), pp.s35-s41. ⟨10.1017/S1751731118003312⟩
Animal, Vol 13, Iss, Pp s35-s41 (2019)
ISSN: 1751-7311
1751-732X
Popis: Accumulating evidence supports that the hormone prolactin (PRL) is galactopoietic in dairy ruminants. Accordingly, the inhibition of PRL secretion by the dopamine agonists quinagolide and cabergoline causes a sharp decline in milk production and could be useful in several critical periods. First, PRL inhibition may reduce the incidence during the periparturient period of metabolic disorders caused by the abrupt increase in energy demand for milk production. Metabolic disturbances can be lessened by reducing milk output by milking once a day or incompletely in the first few days of lactation. The injection of cows with quinagolide for the first 4 days of lactation reduced milk production during the first week of lactation without any residual effects. Blood glucose and calcium concentrations were higher and β-hydroxybutyric acid concentration was lower in the quinagolide-treated cows. Second, PRL inhibition may help sick or injured lactating cows, considering that they can fall into severe negative energy balance when they are unable to consume enough feed to support their milk production. This leads to a weakened immune system and increased susceptibility to diseases. When cows were subjected to feed restriction and were treated with quinagolide, the decrease in milk production was accelerated without any residual effects. The quinagolide-treated cows had higher glucose and lower β-hydroxybutyric acid and non-esterified fatty acid concentrations than the control cows did. Third, PRL inhibition may facilitate drying-off in high-yielding cows, because they are often dried off while still producing significant quantities of milk, which delays mammary involution and increases risk of mastitis. Therefore, strategies that reduce milk production before drying-off and accelerate mammary gland involution could be an important management tool. In this context, inhibition of PRL was utilised to accelerate mammary gland dry-off. Quinagolide decreased milk production within the first day of treatment, and both quinagolide and cabergoline induced more rapid changes in several markers of mammary gland involution after drying-off. In addition, quinagolide improved the animals’ resistance to intramammary infection. These results suggest that the inhibition of PRL could be a strategy for facilitating drying-off, reducing metabolic stress during the postpartum period, and alleviating acute nutritional stress during illness without compromising the overall productivity of dairy ruminants.
Databáze: OpenAIRE