$k$-partial permutations and the center of the wreath product $\mathcal{S}_k\wr \mathcal{S}_n$ algebra

Autor: Omar Tout
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: We generalize the concept of partial permutations of Ivanov and Kerov and introducek-partial permutations. This allows us to show that the structure coefficients of the center of the wreath product$${\mathcal {S}}_k\wr {\mathcal {S}}_n$$Sk≀Snalgebra are polynomials innwith nonnegative integer coefficients. We use a universal algebra$${\mathcal {I}}_\infty ^k$$I∞k, which projects on the center$$Z({\mathbb {C}}[{\mathcal {S}}_k\wr {\mathcal {S}}_n])$$Z(C[Sk≀Sn])for eachn. We show that$${\mathcal {I}}_\infty ^k$$I∞kis isomorphic to the algebra of shifted symmetric functions on many alphabets.
Databáze: OpenAIRE