Subelliptic geometric Hardy type inequalities on half-spaces and convex domains

Autor: Durvudkhan Suragan, Michael Ruzhansky, Bolys Sabitbek
Rok vydání: 2020
Předmět:
Zdroj: ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752
2639-7390
DOI: 10.1007/s43034-020-00067-9
Popis: In this paper we present $L^2$ and $L^p$ versions of the geometric Hardy inequalities in half-spaces and convex domains on stratified (Lie) groups. As a consequence, we obtain the geometric uncertainty principles. We give examples of the obtained results for the Heisenberg and the Engel groups.
18 pages
Databáze: OpenAIRE